Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Matthew J. Belousoff, Steven J. Langford,* Melissa J. Latter and Vei L. Lau

School of Chemistry, Monash University, Wellington Rd, Clayton, 3800, Victoria, Australia

Correspondence e-mail: Steven.Langford@sci.monash.edu.au

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.003 Å R factor = 0.050 wR factor = 0.119 Data-to-parameter ratio = 16.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4',4",5',5"-Tetranitro-2,3:11,12-dibenzo-1,4,7,10,13,16-hexaoxacyclooctadeca-2,11-diene acetonitrile solvate monohydrate

The structure of the title compound, $C_{20}H_{20}N_4O_{14}$ · H_2O ·-CH₃CN, dimerizes in the solid state to form an open-ended box which holds two H₂O and two CH₃CN molecules.

Received 30 August 2005 Accepted 12 September 2005 Online 17 September 2005

Comment

The complexation ability of crown ethers has been well studied with regard to alkali metal ions and ammonium derivatized guests (Gokel *et al.*, 2004). Functionalized dibenzocrown ethers offer a versatile means for incorporation into supramolecular constructs, allowing potential applications in artificial photosynthesis and molecular devices to be developed (Langford *et al.*, 2002). We report here the crystal structure of the tetranitrodibenzocrown ether, (I), an important precursor to a family of antipodally arranged bichromophoric systems.

The synthesis of (I) was achieved using a previously described method (Duggan *et al.*, 2001). Slow evaporation of a solution in CH₃CN and H₂O (1:1 ν/ν) produced crystals suitable for X-ray analysis. The crystal structure reveals a single crown ether in the asymmetric unit (Fig. 1), cocrystallized with one molecule of CH₃CN and one of H₂O. Both solvent molecules participate in hydrogen bonding; the H₂O molecule bridges (I) and CH₃CN, with *D*–*A* distances of 2.314 (17) Å and 2.105 (16) Å, respectively (see Table 1).

Molecules of (I) dimerize in the solid state to form openended boxes in which two molecules of H₂O and two molecules of CH₃CN are housed, as shown in Fig. 2. Edge-on stacking of (I) forms channels (*ca* 8 Å wide and 15 Å long) which are filled by the included solvent molecules. The stacking is stabilized by π - π interactions between crown ethers with a mean plane separation distance of 3.61 Å.

Experimental

The title compound was synthesized by a literature procedure (Duggan *et al.*, 2001). Yellow crystals suitable for X-ray analysis were grown by slow evaporation of a CH₃CN and H₂O (1:1 ν/ν) solution of the compound.

Acta Cryst. (2005). E61, o3283-o3284

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

organic papers

Crystal data

 $\begin{array}{l} C_{20}H_{20}N_4O_{14}\cdot C_2H_3N\cdot H_2O\\ M_r = 599.47\\ \text{Triclinic, } P\overline{1}\\ a = 10.766 \ (2) \ \text{\AA}\\ b = 11.648 \ (2) \ \text{\AA}\\ c = 11.813 \ (2) \ \text{\AA}\\ \alpha = 69.89 \ (3)^{\circ}\\ \beta = 74.07 \ (3)^{\circ}\\ \gamma = 75.84 \ (3)^{\circ}\\ V = 1319.0 \ (5) \ \text{\AA}^3 \end{array}$

Data collection

Nonius KappaCCD diffractometer Thick-slice φ and ω scans 25863 measured reflections 6200 independent reflections 3503 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.050$
$wR(F^2) = 0.119$
S = 1.00
6200 reflections
388 parameters

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1W-H1W\cdots O13^{i}\\ O1W-H2W\cdots N5 \end{array}$	0.84 (1)	2.31 (2)	3.141 (3)	169 (7)
	0.84 (1)	2.11 (2)	2.932 (3)	168 (5)

Symmetry code: (i) -x, -y + 1, -z + 1.

All H atoms were placed in idealized positions except for the water H atoms. O1W-H1W and O1W-H2W distances were restrained to 0.83 (1) Å.

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Australian Research Council, Discovery Project Scheme through awards to SJL (DP0343096 & DP0556313). VLL thanks the Australian government for an Australian Postgraduate Research award.

References

Duggan, S. A., Fallon, G., Langford, S. J., Lau, V-L, Satchell, J. F., Paddon-Row,
M. N. (2001). J. Org. Chem. 66, 4419–4426.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Z = 2 $D_x = 1.509 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 25863 reflections $\theta = 4-25^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 173 (2) K Square prism, yellow $0.2 \times 0.17 \times 0.13 \text{ mm}$

$$\begin{split} R_{\rm int} &= 0.089\\ \theta_{\rm max} &= 27.9^\circ\\ h &= -12 \rightarrow 14\\ k &= -15 \rightarrow 15\\ l &= -15 \rightarrow 15 \end{split}$$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0527P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.32 \text{ e } \text{Å}^{-3}$

Figure 1

ORTEP-3 (Farrugia, 1997) representation of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2

Solid-state dimer formed by (I), with included solvent, showing the extent of hydrogen bonding (dashed lines). H atoms on the crown ether have been omitted for clarity.

Gokel, G. W., Leevy, W. M. & Weber, M. E. (2004). Chem. Rev. 104, 2723–2750. Langford, S. J., Lau, V-L., Lee, M. A. P., Lygris, E. (2002). J. Porph. Phthal. 6, 748–756.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A. edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.